B.Sc. Semester III (Honours) Examination, 2018-19

MATHEMATICS

Course ID : 32114
Course Code : SHMTH-304GE-3(T)

Course Title : Algebra

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Find the values of $i^{3 / 4}$.
(b) Apply Descartes' rule of signs to find the nature of the roots of the equation

$$
x^{4}+7 x^{3}+2 x-1=0 .
$$

(c) If a, b, c are positive reals, not all equal, then prove that $(a+b+c)(b c+c a+a b)>9 a b c$.
(d) Let S be the set of all lines in 3 -space. A relation R is defined on S by " $l R m$ if and only if l lies on the plane of m " for $l, m \in S$. Examine whether R is an equivalence relation.
(e) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=3 x^{2}-5$. Then find $f^{-1}(\{70\})$.
(f) Use Cayley-Hamilton theorem to find A^{-1} where $A=\left(\begin{array}{ll}3 & -2 \\ 4 & -3\end{array}\right)$.
(g) Find the dimension of the subspace S of \mathbb{R}^{4}, where $S=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+2 y-z+2 w=0\right\}$.
(h) Examine whether the mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(x+y, y+z, x+1)$ is linear or not? Justify your answer.
2. Answer any four questions:
(a) Solve: $x^{3}-9 x+28=0$.
(b) (i) If the roots of the equation $x^{3}+a x^{2}+b x+c=0$ be in G.P, show that $b^{3}=a^{3} c$.
(ii) Show that $3 x^{5}-4 x^{2}+6=0$ has at least two imaginary roots.
(c) (i) If x, y, z are positive real numbers and $x+y+z=1$, prove that $8 x y z \leq(1-x)(1-y)(1-z) \leq \frac{8}{27}$.
(ii) If n be a positive integer >1, prove that $\left(\frac{n+1}{2}\right)^{n}>n$!
(d) The matrix of $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ relative to the ordered basis $\{(0,1,1),(1,0,1),(1,1,0)\}$ is $\left(\begin{array}{rrr}0 & 3 & 0 \\ 2 & 3 & -2 \\ 2 & -1 & 2\end{array}\right)$. Find the linear transformation T. Find the matrix of T relative to the ordered basis $\{(2,1,1),(1,2,1),(1,1,2)\}$. $3+2=5$
(e) (i) Use the theory of Congruences to prove that $17 \mid\left(2^{3 n+1}+3 \cdot 5^{2 n+1}\right)$ for all positive integers n.
(ii) Let a, b, c, m be positive integers such that $a c \equiv b c(\bmod m) \operatorname{and} \operatorname{gcd}(c, m)=1$ then prove that $a \equiv b(\bmod m)$.
(f) Solve if possible, the system of equations

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=0 \\
& -x_{1}+x_{2}+2 x_{3}=2 \\
& 2 x_{1}+x_{2}-3 x_{3}=2
\end{aligned}
$$

3. Answer any one question:
(a) (i) If α, β are the roots of the equation $x^{2}-2 x+4=0$, prove that $\alpha^{n}+\beta^{n}=2^{n+1} \cos \frac{n \pi}{3}$.
(ii) Show that the sum of the 99 th power of the roots of the equation $x^{5}=1$ is zero.
(iii) Verify Cayley-Hamilton theorem for the matrix $\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right)$. Hence find A^{-1}.

$$
3+3+4=10
$$

(b) (i) Apply elementary row operations to reduce the following matrix to a row echelon matrix and find the rank of the matrix $\left(\begin{array}{rrrr}2 & 0 & 4 & 2 \\ 3 & 2 & 6 & 5 \\ 5 & 2 & 10 & 7 \\ 0 & 3 & 2 & 5\end{array}\right)$.
(ii) State first principle of mathematical induction. Apply this to prove that $3^{2 n}=8 n-1$ is divisible by 64 .

